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Abstract-In the low Reynolds number flow, shock wave and viscous layer near the stagnation point of 
a blunt-body are merged together. This merged shock layer is investigated in this paper for a radiating 
gas. The radiating transfer is simplified to the emission-dominated case. The basic model of the flow is 
described by the full Navier-Stokes equations. Using the concept of local similarity, the equations are 
reduced to an eighth-order set of nonlinear, coupled ordinary differential equations. This set of equations 
is integrated numerically from the surface to the freestream under different prescribed conditions. Earlier, 
this problem was investigated by Liu and Sogame [3] within the framework of two thin-layer model. A 
number of inaccuracies of this analytical development are pointed out. It is shown that the present analysis 
gives more reliable and accurate information about the detailed behaviour of the radiating viscous flow at 

low Reynolds number. 

NOMENCLATURE 

heat transfer coefficient, &,/p,ii,(R, - 
BW) : 
specific heat at constant pressure; 
total enthalpy ; 
dimensionless enthalpy, h/ii: ; 
coefficient of heat conductivity; 
freestream Mach number; 
dimensionless pressure, p /p,ii: ; 
Prandtl number ; 
radiative energy loss per unit mass; 
rate of energy transferred to body surface ; 
radiative energy flux to body surface; 
gas constant ; 
dimensionless radial distance, F//p,; 
body radius ; 
Reynolds number, p,ii, fb/,ii,, ; -- 
temperature, T/To ; 

dimensionless tangential velocity compon- 
ent, Efii, ; 
freestream velocity; 
dimensionless normal velocity component, 
c/la, ; 
absorption coefficient ; 
ratio of radiative energy emission to energy 
convection; 
ratio of specific heats ; 
transformed radial coordinated ; 
angle between r and axis of symmetry; 
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K, 

P* 
P. 
Q, 

mass absorption coefficient ; 
dimensionless viscosity coefficient, ,!i/,& ; 

-- 
dimensionless density, p/p,; 

Stephan-Boltzman constant. 

Superscript 

(A dimensional quantities. 

Subscripts 
W, 

:’ 

wall conditions ; 
freestream conditions ; 
stagnation conditions. 

1. INTRODUCTION 

WHEN a space vehicle re-enters the earth atmosphere, 
the temperature of the gas is very high and thermal 
radiation becomes an important mode of heat 
transfer. A complete analysis of such high temperature 
flow field should be based upon a study of interaction 
between a moving gas and a radiation field. Radiation 
decreases the total energy of the shock layer gas and 
it is often referred to as the radiation cooling effect. 
This radiation cooling has significant effect on the 
velocity and temperature profiles in the shock layer. 
It also reduces the convective heat transfer to the 
surface. 

At low Reynolds number, a thick shock wave 
merges with the adjoining viscous zone near the 
stagnation region of a blunt-body and it is difficult to 
distinguish between the two. This is generally called 
‘Merged Shock Layer’. A detailed review of the 
pertinent literature for a perfect gas is given by Cheng 
[l] and Jain [Z]. Liu and Sogame [3] in their papel 
investigated the effect of radiation cooling in the 
merged shock layer within the framework of two thin- 
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layer model of Cheng [4, 5). The model basically 
consists of a thin shock wave followed by a thin 
viscous layer. The usual Rankine-Hugonoit relations 
are modified by the presence of transport and radia- 

tive effects behind the shock wave. For the sake of 
simplicity, they considered the emission-dominated 

case in which the radiative heat flux due to emission 
is much larger than due to reabsorption. The gas 

ahead of the shock structure was assumed cold and 

neither absorbing nor emitting. By an iterative tech- 
nique, they solved the problem of shock layer and 

shock wave like zones separately. 

in the merged shock layer. Above Re = 25, the various 
flow profiles in the merged shock layer are very close 
to that of two thin-layer model. 

Recently, Adimurthy and Jain [6] considered in 

detail the basic model of the flow, that may possibly 
exist near the stagnation region in the low Reynolds 

number regime, within the framework of Navier 

Stokes equations and compared the results with 
Cheng’s analysis and other available theoretical and 

experimental data. They found that the thin-layer 
approximation can not adequately describe the 

detailed structure of the flow in the low Reynolds 
number regime. It is to be expected as Cheng in- 

vestigated the viscous zone by neglecting the pressure 

variation across it which seems to be appreciable from 

the present analysis. The thickness of the merged 
shock layer is also of the order of body radius making 

the thin-layer approximation invalid at low Reynolds 
numbers. Moreover, in the two thin-layer model of 
Cheng, there lies a discontinuity in the temperature 

at the interface of the shock wave and the shock layer 

and the flow does not merge smoothly with the free- 
stream. 

In this paper, the assumption of a perfect gas having 

constant specific heat and a linear viscosity law is 
made. The radiative transfer term is simplified to the 
emission-dominated case. This is valid when the 

smallest local photon mean freepath is large compared 
to the thickness of the merged shock layer. The gas is 

assumed to be gray with a frequency-averaged 
absorption coefficient which depends on the local 

pressure and temperature. The effects of radiation on 
the pressure and internal energy of the gas are 

neglected since the temperature is not so high as to 
make these effects considerable. The cold wall case is 
considered. 

For reasons stated above, modification of Cheng’s 

analysis by the introduction of radiation effects will 
lead to inaccurate results at low Reynolds number. 
In the present investigation, we have considered the 

radiation cooling effects on the detailed structure and 
heat transfer characteristics of the flow. The flow is 
described by the full Navier-Stokes equations. The 
energy equation is modified by introducing the 

radiative term. Using the concept of local similarity, 
the above equations are reduced to an eighth-order 
set of nonlinear, coupled ordinary differential equa- 
tions which are integrated by a successive accelerated 
replacement technique from the surface to the free- 
stream. It is found that with our formulation, there is 
no discontinuity in any of the flow quantity and the 
flow quantities merge smoothly with the freestream. 
In the present investigation, the temperature level in 
the merged shock layer is slightly higher, the merged 
shock layer is thicker, the decrease in the thickness due 
to radiation cooling is smaller and the radiative heat 
transfer coefficient is higher than in Liu and Sogame’s 
r3] work. We could also obtain the pressure variation 
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Finally, we may add that most of the earlier work 
on radiating shock layer near the stagnation region 
of a blunt-body is valid only for high Reynolds 

number. Howe and Viegas [7] introduced radiation 

effects in the viscous layer model. Burggraf [8] used 
the method of asymptotic expansions for large 

Reynolds numbers considering only the emission- 
dominated case. Hoshizaki and Wilson [9] obtained 

the solutiions of a viscous radiating shock layer 
using an integral method. In [lo], they further 
introduced the effects of self-absorption and mass 
injection also. 

2. GOVERNING EQUATIONS OF MOTION 

\ 

FIG. la. Dimensional coordinate system 

FIG. I b. Dlmenslonless coordlnatc system 
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In the coordinate system defined in Fig. 1, the 
basic nondimensional form of the equations of 
motion on an axisymmetric body are 

r(ptQ, + (pu), + ~(20 + u cot 0) = 0 (1) 

pr + p ( IN, + ” v 
U2 1 4u 

r 
@ - T = Re > [ -< 11, 

+~I..]“+~~~~.-~)-~[211,+2ucot~ 

ll 
--2 ~ 0 cot 6 - qg cot 0 

1 
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r , 

p dl, + 4f h, ( 1 = up, + ” pe + ; 
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2u; + ; (ue + u)2 

+ s(ur+ ucot8)’ +jr(FJ + :I] 

- & [ro, + u0 + 2u + u cot 01’ 

1 
+--- 

[( > 
fh, 

rPrRe r 
+ (prh,): 

e 

+,(i,+Eyho)] -pQ (4) 

P = (Y - 1) My (5) 

p=T (6) 

where subscripts denote partial differentiation. 
In the above equations, variables are nondimen- 

sionalized as 

_- -- 
v = ii/ii,, u = ii/ii,, p = pJp,, T = T/T,, p = ji/j&,, 

h = h/iii, r = ?//Tb, Pr = c&k, Re = ~mtimT,,/ji,, 

where jiO is the viscosity coefficient at freestream 
stagnation temperature 5$. 

Boundary conditions are 
(i) On the body 

u = 1, = 0, h = h, 

(ii) In the freestream 

u = sin 8, t) = -cos 0, p = 1, h = l/(y - 1) Mi. 

In equation (4), -pQ represents the radiative heat 
loss and is given by 

pQ = (4pKd4)/(~,ii3,,). (7) 

The gray volumetric absorption coeflicient PK is 
assumed to be of the form taken by Traugott [ 1 l] 

where C is a constant. 
Substituting a in equation (7), it can be shown that 

PQ = Vo%,fJ ApT8 (8) 

where 

and 
- 

1 &!$!+__. 
u, 2 (Y - 1) M2, 

We assume the following form of the solution about 
the axis of symmetry 

u(r, s) = ul(r) sin 0 

n(r, 9 = Ill(r) cos 0 

p(r, 9 = plW 

h(r, 9 = h,(r) 
(9) 

pb-, 9 = PI(r) + pdr) sin’ 8 

l*(r, 9 = h(r) 

where the terms with subscripts 1 and 2 are functions 
of r only. Let 

r-l 

r, - 1 
- q and r, - 1 = n, so that r = 1 + NJ. 

Here, r, and n, define the location of the freestream 
from < the origin and from the body respectively as 
shown in Fig. lb. 

Substituting (9) in equations (lH9 and changing 
the independent variable r to q. we obtain 

Pl np 1 + w -= 1) 
Pl (1 i n,f/)11, [ 

-2(u, + lJ1) - -- 
( >I 1 

4 

(10) 
I, 

Ul -_= 
2 

n, 
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[ ’ 2P2 + -~“1-~_ + Re ,,,l,,!! f _~.. 
3n,(l + n,rl) wl I Pl(1 + nA 

(11) 

I 
+---- 

1 W + n,rl) 
(12) 

Pi ’ Ml + 111 
-_= 
n, 

-; + piul -- 
( > 1 + n,u 

(13) 
e 

Ap,o,T; (1 + n,r# = (1 + n,r# 
n, 

1 
2 

+ 2(u, + 111) 

- (1 + w7Wo~0~d FIG (14) 

Pi = (Y - l)P,h,lY (19 

Pl = Tl. (16) 

Here, a prime denotes differentiation with respect to q. 
The boundary conditions become 
(i) On the body (rl = 0) 

ul = rji = 0, Ti = T, = T, or Ti = T, = 0.1 

(ii) In the freestream (rl = 1) 

ui = 1,oi = -1, pi = 1, 

T,, = [1 +qMy; p2=o. 

3. METHOD OF SOLUTION 

Equations (10)-(19 constitute a let of nonlinear, 
coupled ordinary differential equations with split 
boundary conditions. These equations are integrated 
by a finite-difference method known as Successive 
Accelerated Replacement (SAR) method. The method 
is successfully used earlier by Dellinger [12] and by 
Adimurthy and Jain [6]. There are two salient 
features of this method. One is that it involves the 
application of one particular equation only for the 
correction of one particular unknown variable in each 

iteration. The second is that the corrections applied 
to the values of the variables at each of the mesh 
points are controlled by “acceleration factors’ which 
prevent the iteration scheme from diverging. Thus, a 
successful application of this method does not 
critically depend on how well the initial guesses 
approximate the converged solution. SAR method is 
applied only for the second-order equations, while 
the first-order equations are solved by direct numeri- 
cal quadrature. There are three differential equations 
of second-order which may be written as 

U(u;‘, u;, II;, PL;, ui, i:i. pi, pi, pz, n,) = 0 (17) 

V(vY, 111, u;, pi, 14, ul, ul, h pl, 4) = 0 (18) 

WY, Ti, v;,A, pi, ulq h, p,, pl, pl, TIT d = 0 WI 

where prime denotes differentiation with respect to v. 
Solution is desired in the range 0 < rt < 1, which is 
divided into M equal intervals, each of length 
d = l/M. Equations (17)-(19) are written in the 
finite-difference form using 

XL = (XNt 1 - XN- J/24 (20) 

-G = w.v+ 1 - 2x, + X,_,)/LIZ (21) 

where X, stands for any one of the variables at Nth 
mesh point. To start with, initial guesses are made for 
all the variables at each of the mesh points, consistent 
with the boundary conditions. A guess for effective 
freestream location, n,, is also made. The variables 
ui, vl and Tl are corrected using an acceleration 
factor which ensures that the correction applied to a 
variable is never greater in magnitude than E times 
the previous value of the variable where E is a pres- 
cribed, small, positive number. The value of n, is 
adjusted in each iteration by the requirement that the 
temperature gradient at the freestream should be 
small. Full details of SAR method are given in [12]. 

In each iteration, after correcting ul, ri and Ti 
using SAR method, new values of pl and pz are 
obtained by numerical integration of the first-order 
equations (10) and (13). Equation (10) gives difficulty 
in integration at the wall where ul = 0. To circumvent 
it, an alternative method is employed here. The 
density is obtained in the usual way by integrating 
equation (10) but the integration is carried out only 
up to one mesh point away from the wall. The 
corresponding pressures are obtained from the 
equation of state. The final pressure on the wall is 
obtained from the linear expression 

(Pl), = (Pdd - 4PJv (22) 

where (pi):, is obtained from equation (12) by writing 
it at the first mesh point in finite-difference form. 
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Knowing (pi), equation of state is used to obtain the 
density at the wall. 

The numerical procedure described above is pro- 
grammed and the computations are carried out on 
an IBM 7044 computer. The parameters ToaoFb, Re, 
Pr, y and M, are prescribed. A finite mesh size of l/60 
is taken. For each set of values, about a thousand 
iterations are required before proper convergence is 
achieved, i.e. when the changes in the flow variables 
occurred only in the fifth or sixth place of decimal. 

4. DISCUSSION OF RESULTS 

Numerical solutions are obtained for Re varying 
from 2 to 50 with M, = 10, Pr = 075 and y = 1.4. 
Radiation parameter r,,aJb is taken as 0,350 and 700. 
Under cold wall conditions, T, = T, is taken but to 
study the effects of wall temperature variation, 

T, = @l is also considered. A linear p-T relationship 
is assumed but k cc ,/T is also taken to illustrate the 
effects of different p-Trelationship on the flow charac- 
teristics. 

In Figs. 24, ul, ur, T,, p1 and p1 profiles are plotted 
in the stagnation region for Re = 7.0, 26.6 and 
ToaOP, = 0.0, 35@0. It is seen that due to radiation 
cooling, the temperature level in the merged shock 
layer is reduced and the merged shock layer becomes 
thinner. ur, ur and Tl profiles are compared with the 
results of Liu and Sogame [3]. Figures 2 and 3 show 
that these profiles differ considerably from [3] at low 
Reynolds number while the difference is very little at 
Re = 26.6 as is seen from Fig. 4. In the present 
analysis, the temperature in the merged shock layer 
is slightly higher, the merged shock layer is thicker 

-Present results 
-.- Liu and Sogome’s 

results 

r 

FIG. 2. Tangential and normal velocity profiles in the 
. . .I 

mergeo snocklayer. 

and the decrease in the thickness due to radiation cool- 
ing is not as large as in [3]. The difference at low 
Reynolds number is due to the fact that the thin-layer 
assumption is not valid as the thickness of the 
merged shock layer becomes comparable to the body 
radius. Since no thin-layer assumption is made here, 
it is expected that the present results are more reliable 
at low Reynolds numbers. At moderately high Rey- 
nolds number, the merged shock layer is quite thin 
making the thin-layer assumption valid and so the 
profiles in the two analysis are very close. Moreover, 
in the two thin-layer model, there is a discontinuity 

2- 
a 

- - Liu ond Sogome’s results 

IO Re q 7-C 
M,=DO 

06 

04 

02 

20 

0 0 
IO II 12 13 I.4 

I 

FIG. 3. Temperature, pressure and density profiles in the 
merged shock layer. 

0 
10 I/ 12 IO I 12 13 

I 
I 

FIG. 4. Velocities, temperature, pressure and density profiles 
in the merged shock layer. 
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in the flow variables at the interface of the two layers 

due to lack of proper matching. Merging with the 
freestream is also not smooth. Present analysis 

removes the discontinuity in the flow variables and 
the flow smoothly merges with the freestream. 

Use of the full Navier-Stokes equations without 
any assumption on pressure gradient made it possible 

to calculate the pressure distribution in the stagnation 
region. Density distribution is also obtained. The 
effect of radiation cooling on density is insignificant at 

low Reynolds number but at higher Reynolds num- 
ber, density first increases near the surface and then 

decreases from its zero radiation value as shown in 

Fig. 4. 

In Fig. 5, the thickness of the merged shock layer is 
plotted against Re. The thickness is defined as the 

distance of the point at which T1 = @l from the body 

surface. It can be seen that at very low Re, the thickness 
is 08-09 of the body radius suggesting that the thin- 
layer approximation is not correct at very low Ke. 

Effect of radiation cooling is to decrease slightly the 

merged shock layer thickness. 

0 I 
0 IO 0 100 0 

Re 

FIG. 5. Merged shock layer thickness vs Reynolds number. 

Considering the most important aspect of heat 
transfer to the body surface by various modes, the 
local heat transfer rates have been nondimensional- 
ized with respect to P,ii,(H, - R,,,) = p,i$,/2 for 
a cold wall and hypersonic freestream. Convective 
heat transfer coefficient is given by 

c;r = 
kV@~l’ja%V 2Ap(, i?T 

=___ - 
WGl2 0 Pr Ren, 2~ W’ 

(23) 

The contribution from the radiative heat flux to 

the surface is obtained by the following integral 

8 = 4 7 ,8ti4aT4 di: = 20 7 CpT8 dr. 
i, i, 

In terms of heat transfer coefficient, radiative heat 

transfer coefficient is given by 

c”H = &(~,Z/2) = n,A(r,@d S PT* drl. (24) 
0 

The total heat transfer coefficient c$” can be ob- 

tained by adding (23) and (24). 
In Fig. 6, cfi, c$ and ci” are plotted against Re for 

rOuO?b = 700. ci curve is for zero radiation case i.e. 

when roccoFb = 0. It is seen that the radiation cooling 

reduces the convective heat transfer to the surface. 

Re 

FIG. 6. Convective. radiative and total 
Reynolds number. 

heat transfer vs 

Further, 4 decreases with decrease in Re while c;l 

increases. Results are compared with that of Liu and 

Sogame [3]. Present analysis gives slightly higher 
values of c”, and the difference decreases as the 
Reynolds number increases. The difference in I$, curve 
seems to be mainly due to the wall temperature effect. 
In the present work, when the wall temperature was 
changed from T, = T, = @04’!6 to T, = 0.1 to see 

the effect of wall temperature, it was found that the 
cfl curve moved considerably towards the curve of 
Liu and Sogame while 4 curve was hardly affected. 
This is explained from Fig. 7 which shows that chang- 
ing the wall temperature from 0.047’6 to 01 does not 
affect the various profiles except that the surface 
density is decreased. Since 4 is an integrated effect of 
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06 60 

34 40 

02 20 

0 0 
IO 1 I I.2 13 

FIG. 7. Effect of wall temperature variation. 

temperature distribution in the merged shock layer 
which is not altered due to the change in wall tempera- 
ture from 00476 to 01, c$ curve remains practically 
unchanged. 

Re=l4.0 

/- Mm= 10.0 

L- 

b 
‘. 

a- 

r 

FIG. 8. Effect of IL-T relationship. 

In the end, to see the effect of p--T relationship, ur, 
IQ and Tr curves are plotted in Fig. 8 for p cc T and 
for p a Jr Only zero radiation case is considered. 
It is seen from Fig. 8 that the merged shock layer 
thickness is increased when p a ,/ T since it effectively 
decreases the value of Reynolds number. 
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COUCHE DE CHOC HYPERSONIQUE ET RAYONNANTE, PROCHE DE LA REGION 
D’ARRET DUN CORPS EMMOUSSE 

R&mn&Dans un tcoulement a nombre de Reynolds mod&t, I’onde de choc et la couche visqueuse proches 
du point d’arret d’un corps tmousst sont fondues ensemble. Cette couche de choc est etudi&e ici pour un 
gaz rayonnant. Le transfert par rayonnement est simplifie. Le modele d’6coulement est decrit par les tqua- 
tions completes de Navier-Stokes. En utilisant le concept de similarite locale, les 6quations sont r&mites a 
un systtme d’tquations diff6rentielles non lineaires, couplees, du huitidme ordre. Ce systeme d’equations est 
inttgre numtriquement entre la surface et I’ecoulement libre sous differentes conditions de pression. 
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Auparavant ce probleme avait Cte &die par Lin et Sogame [31 dans le cadre d’un modtle a deux couches 
minces. On a d&gage un certain nombre d’inexactitudes dam cette analyse. On montre que la presente 
etude donne une information plus precise sur le comportement detaillt de I’tcoulement visqueux Cmissif 

aux nombres de Reynolds mod&es. 

HYPERSONISCHE STOSSSCHICHT MIT STRAHLUNG IN DER STAUZONE 
EINES STUMPFEN Ki)RPERS 

Zusammenfassung-Bei niedrigen Reynolds-Zahlen verschmelzen Stossschicht und viskose Schicht in 
der Nahe des Staupunkts eines stumpfen Korpers miteinander. Diese verschmolzene Stossschicht wird in 
dieser Arbeit an einem strahlenden Gas untersucht. Die Strahlung wird auf den Fall tiberwiegender 
Emission beschrlnkt. Mit Hilfe der lokalen Ahnlichkeit werden die Gleichungen reduziert auf einen Satz 
von nichtlinearen, gekoppelten, gewiihnlichen Differentialgleichungen achter Ordnung. Dieser Gleichungs- 
satz wird numerisch integriert van der F&he bis zur freien Striimung unter verschiedenen Bedingungen. 
Vorher wurde das Problem von Liu und Soaame f31 mit Hilfe eines Modells mit zwei diinnen Schichten 
behandelt. Ungenauigkeiten dieser analytischen Emkicklung werden aufgezeigt. Die vorliegende Analyse 
gibt eine zuverllssigere und genauere Information iiber das besondere Verhalten der viskosen Striimung 

mit Strahlung bei niedrigen Reynolds-Zahlen. 

I’HHEP3BYKOBOfl H3JIY~=IAlGIIJHi4 CJIMTbIfl YjjAPHbIm CJIOm B 
OKPECTHOCTH HPHTWIECHO~ TOYKH BATYHJIEHHOI’O TEJIA 

AaHoTaqm-npx TegeHIlll C MaJIbIM WICJIOM PetiHOnbnCa yAapHap BOJIHa I4 BR3KId CJlOt 

CJIL1Ba.H)TC~BOHpeCTHOCTHKpHTMqeCKO~TOYKR3aTynneHHOrOTena. B HaCTOHQeti pa6oTe TaKOZt 
cn14Tb1B yRapHbIti cnol mcnenyeTcR B x3nysamuieM raae.JIysmTbIlf nepeHoc ynpoqaeTcx 5f 

CB~HP~TCR x cnyqam ~OMHHI4pylO~efh 3MHCCHII. OCHOBHaR MOReJIb IIOTOKa OIIHCbIBaeTCR 

IIOJIHbIMH ypaBHeHHRMI4 HaBbe-CTOKCa. kkIIOJIb3yH IIOHRTHe JIOKaJIbHOrO IIOAO6WI, ypaB- 

HeHLlR CBOARTCR IE HeJIllHemHbIM Ci[BOeHHbIM 06bIsHbIM AI+C@@epeHIWaJlbHbIM ypaBHeHI?RM 

BOCbMOrO IIOpflAHa. PaHee 3Ta 3aAaYa IICCJIeEOBaJIaCb jTEly 12 COretiMOM [3] Ha MOAeJIll AByX 
TOHKHX CJIOeB. YIEa3bIBaeTCR Ha pFIA HeTOYHOCTeti 3TOt aHaJIHT&NeCKOti paapa60TI-x. HOKa- 

3aH0,YTO XaIIHbIti aHaJII43 AaeT 6onee HaAemHbIe I? TOgHbIe CBeAeHHFI 0 IIOBeAeHHH JIyWICTOrO 

BRBKOrO IIOTOIEa IIpll MaJIOM WfCJIe PefiHOJIbACa. 


