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Abstract—In the low Reynolds number flow, shock wave and viscous layer near the stagnation point of
a blunt-body are merged together. This merged shock layer is investigated in this paper for a radiating
gas. The radiating transfer is simplified to the emission-dominated case. The basic model of the flow is
described by the full Navier-Stokes equations. Using the concept of local similarity, the equations are
reduced to an eighth-order set of nonlinear, coupled ordinary differential equations. This set of equations
is integrated numerically from the surface to the freestream under different prescribed conditions. Earlier,
this problem was investigated by Liu and Sogame [3] within the framework of two thin-layer model. A
number of inaccuracies of this analytical development are pointed out. It is shown that the present analysis
gives more reliable and accurate information about the detailed behaviour of the radiating viscous flow at
low Reynolds number.

NOMENCLATURE

¢y heat transfer coefficient, §,/piio(H, —
B,):

Cpr specific heat at constant pressure;

H, total enthalpy;

h, dimensionless enthalpy, h/i% ;

k, coefficient of heat conductivity;

M, freestream Mach number;

p, dimensionless pressure, p /5 ,#2 ;

Pr, Prandtl number;

0, radiative energy loss per unit mass;

G rate of energy transferred to body surface;

. radiative energy flux to body surface;

R, gas constant;

r, dimensionless radial distance, 7/7,;

Fo body radius;

Re,  Reynolds number, g i, 7,/fio;

T, temperature, T/Ty;

u, dimensionless tangential velocity compon-
ent, /il ;

.  freestream velocity;

v, dimensionless normal velocity component,
/b

o, absorption coefficient ;

I, ratio of radiative energy emission to energy
convection ;

s ratio of specific heats;

7, transformed radial coordinated ;

0, angle between r and axis of symmetry;
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K, mass absorption coefficient ;

U, dimensionless viscosity coefficient, i/fi, ;

o, dimensionless density, 5/p,,;

a, Stephan-Boltzman constant.
Superscript

(),  dimensional quantities.
Subscripts

w, wall conditions;

0, freestream conditions;

0, stagnation conditions.

1. INTRODUCTION

WHEN a space vehicle re-enters the earth atmosphere,
the temperature of the gas is very high and thermal
radiation becomes an important mode of heat
transfer. A complete analysis of such high temperature
flow field should be based upon a study of interaction
between a moving gas and a radiation field. Radiation
decreases the total energy of the shock layer gas and
it is often referred to as the radiation cooling effect.
This radiation cooling has significant effect on the
velocity and temperature profiles in the shock layer.
It also reduces the convective heat transfer to the
surface.

At low Reynolds number, a thick shock wave
merges with the adjoining viscous zone near the
stagnation region of a blunt-body and it is difficult to
distinguish between the two. This is generally called
‘Merged Shock Layer. A detailed review of the
pertinent literature for a perfect gas is given by Cheng
[1] and Jain [2]. Liu and Sogame [3] in their pape:
investigated the effect of radiation cooling in the
merged shock layer within the framework of two thin-
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layer model of Cheng [4, 5]. The model basically
consists of a thin shock wave followed by a thin
viscous layer. The usual Rankine—Hugonoit relations
are modified by the presence of transport and radia-
tive effects behind the shock wave. For the sake of
simplicity, they considered the emission-dominated
case in which the radiative heat flux due to emission
is much larger than due to reabsorption. The gas
ahead of the shock structure was assumed cold and
neither absorbing nor emitting. By an iterative tech-
nique, they solved the problem of shock layer and
shock wave like zones separately.

Recently, Adimurthy and Jain [6] considered in
detail the basic model of the flow, that may possibly
exist near the stagnation region in the low Reynolds
number regime, within the framework of Navier—
Stokes equations and compared the results with
Cheng’s analysis and other available theoretical and
experimental data. They found that the thin-layer
approximation can not adequately describe the
detailed structure of the flow in the low Reynolds
number regime. It is to be expected as Cheng in-
vestigated the viscous zone by neglecting the pressure
variation across it which seems to be appreciable from
the present analysis. The thickness of the merged
shock layer is also of the order of body radius making
the thin-layer approximation invalid at low Reynolds
numbers. Moreover, in the two thin-layer model of
Cheng, there lies a discontinuity in the temperature
at the interface of the shock wave and the shock layer
and the flow does not merge smoothly with the free-
stream.

For reasons stated above, modification of Cheng’s
analysis by the introduction of radiation effects will
lead to inaccurate results at low Reynolds number.
In the present investigation, we have considered the
radiation cooling effects on the detailed structure and
heat transfer characteristics of the flow. The flow is
described by the full Navier-Stokes equations. The
energy equation is modified by introducing the
radiative term. Using the concept of local similarity,
the above equations are reduced to an eighth-order
set of nonlinear, coupled ordinary differential equa-
tions which are integrated by a successive accelerated
replacement technique from the surface to the free-
stream. It is found that with our formulation, there is
no discontinuity in any of the flow quantity and the
flow quantities merge smoothly with the freestream.
In the present investigation, the temperature level in
the merged shock layer is slightly higher, the merged
shock layer is thicker, the decrease in the thickness due
to radiation cooling is smaller and the radiative heat
transfer coefficient is higher than in Liu and Sogame’s
[3] work. We could also obtain the pressure variation

Asay KuMmar and A. C. JaIN

in the merged shock layer. Above Re = 25, the various
flow profiles in the merged shock layer are very close
to that of two thin-layer model.

Finally, we may add that most of the earlier work
on radiating shock layer near the stagnation region
of a blunt-body is valid only for high Reynolds
number. Howe and Viegas [7] introduced radiation
effects in the viscous layer model. Burggraf [8] used
the method of asymptotic expansions for large
Reynolds numbers considering only the emission-
dominated case. Hoshizaki and Wilson [9] obtained
the solutilions of a viscous radiating shock layer
using an integral method. In [10], they further
introduced the effects of self-absorption and mass
injection also.

2. GOVERNING EQUATIONS OF MOTION

In this paper, the assumption of a perfect gas having
constant specific heat and a linear viscosiiy law is
made. The radiative transfer term is simplified to the
emission-dominated case. This is valid when the
smallest local photon mean freepath is large compared
to the thickness of the merged shock layer. The gas is
assumed to be gray with a frequency-averaged
absorption coefficient which depends on the local
pressure and temperature. The effects of radiation on
the pressure and internal energy of the gas are
neglected since the temperature is not so high as to
make these effects considerable. The cold wall case is
considered.

Fi1G. 1a. Dimensional coordinate system.
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F1G. 1b. Dimensionless coordinate systcm.
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In the coordinate system defined in Fig. 1, the
basic nondimensional form of the equations of
motion on an axisymmetric body are
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where subscripts denote partial differentiation.
In the above equations, variables are nondimen-
sionalized as

V= 0l = By p = P/Pecy T = T/To, 4 = iif i,
h = hj/ak, r = #/Fy, Pr = c,ji/k, Re = p i Fs/ilo

where i, is the viscosity coefficient at freestream
stagnation temperature Ty,
Boundary conditions are
(l\ On the hndv

(i) In the freestream

u=sinfv=—cosfp=1h=1/(y — 1) M2,
In equation (4), — pQ represents the radiative heat
loss and is given by
pQ = (4pro TP oii%/Ty)- )

The gray volumetric absorption coefficient px is
assumed to be of the form taken by Traugott [11]

=pk =Cp

where C is a constant.
Substituting « in equation (7), it can be shown that

pQ = (FoooFy) ApT® ®
where
40T} -
FO= — - —’ao-_‘C(Pm“m)Tg
pwuoocp:r;)
and
c,T, 1 1
A=r0__ 4 _ 5
a2 (y-1DM

We assume the following form of the solution about
the axis of symmetry

u(r, @) = u,(r)sin 0
v(r, ) = vy(r)cos 0

plr.0) = py(r) )
k(r,0) = hy(n)

p(r,0) = pi(r) + p,(r)sin? 8

wr, ) = py(r)

where the terms with subscripts 1 and 2 are functions
of r only. Let

r—1
—=mnand r,— 1 =n,sothatr =1 + n.

r, — 1

Here, r, and n, define the location of the freestream
from the origin and from the body respectively as
shown in Fig. 1b.

Substituting (9) in equations (1)+(6) and changing

the independent variable r to #, we obtain

1 n, 1+ nn\ |
b T xamo [—z(ul +01) _( - _\ 17:|
A \ e / ]

(10

" 7 N\ Q

i — ’ ™ =
u u, + 0 L] y2d Kepju
H_(arh M Re
n, 1 + nen 3(1 + ner’) nfty Hy
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— (1 + n)*(ToooF,) Apy TS (19)

pi=0— Dpihy/fy (15)

p =Ty (16)

Here, a prime denotes differentiation with respect to .
The boundary conditions become
(i) On the body (n = 0)

=0, =0T =T, =T, orT) =T, =01
(i) In the freestream (n = 1)

u, =10, =-1p, =1,
«__1 -1
T, = [1+’—2—M§] , pp=0.

3. METHOD OF SOLUTION

Equations (10)—(16) constitute a et of nonlinear,
coupled ordinary differential equations with split
boundary conditions. These equations are integrated
by a finite-difference method known as Successive
Accelerated Replacement (SAR) method. The method
is successfully used earlier by Dellinger [12] and by
Adimurthy and Jain [6]. There are two salient
features of this method. One is that it involves the
application of one particular equation only for the
correction of one particular unknown variable in each

iteration. The second is that the corrections applied
to the values of the variables at each of the mesh
points are controlled by “acceleration factors’ which
prevent the iteration scheme from diverging. Thus, a
successful application of this method does not
critically depend on how well the initial guesses
approximate the converged solution. SAR method is
applied only for the second-order equations, while
the first-order equations are solved by direct numeri-
cal quadrature. There are three differential equations
of second-order which may be written as

n)=0 (17

V(vlllv v(burls p/lv Hllﬂulﬁvl’ My, pl’ne) =0 (18)
1 V1, H1 P1 Us U1y s P D1, Ty mg) = 0 (19)

where prime denotes differentiation with respect to 7.
Solution is desired in the range 0 < n < 1, which is
divided into M equal intervals, each of length
4 = 1/M. Equations (17)-(19) are written in the
finite-difference form using

Xy =(Xys+1 — Xy-1)/24 (20)
N=(Xyey = 22Xy + Xy_p)/4? (21

where X stands for any one of the variables at Nth
mesh point. To start with, initial guesses are made for
all the variables at each of the mesh points, consistent
with the boundary conditions. A guess for effective
freestream location, n,, is also made. The variables
u, v, and T, are corrected using an acceleration
factor which ensures that the correction applied to a
variable is never greater in magnitude than & times
the previous value of the variable where ¢ is a pres-
cribed, small, positive number. The value of n, is
adjusted in each iteration by the requirement that the
temperature gradient at the freestream should be
small. Full details of SAR method are given in [12].

In each iteration, after correcting u,, v, and T,
using SAR method, new values of p; and p, are
obtained by numerical integration of the first-order
equations (10) and (13). Equation (10) gives difficulty
in integration at the wall where v; = 0. To circumvent
it, an alternative method is employed here. The
density is obtained in the usual way by integrating
equation (10) but the integration is carried out only
up to one mesh point away from the wall. The
corresponding pressures are obtained from the
equation of state. The final pressure on the wall is
obtained from the linear expression

o
Ulu, uy, v, py, Uy, 01, fys P15 P2

T( "

(P)w = (P14 — AP1)sw (22)

where (p,),, is obtained from equation (12) by writing
it at the first mesh point in finite-difference form.
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Knowing (p,),,. equation of state is used to obtain the
density at the wall.

The numerical procedure described above is pro-
grammed and the computations are carried out on
an IBM 7044 computer. The parameters I'yao7;, Re,
Pr,yand M, are prescribed. A finite mesh size of 1/60
is taken. For each set of values, about a thousand
iterations are required before proper convergence is
achieved, i.e. when the changes in the flow variables
occurred only in the fifth or sixth place of decimal.

4. DISCUSSION OF RESULTS

Numerical solutions are obtained for Re varying

from 2 to 50 with M = 10, Pr = 075 and y = 14,
Radiation parameter I'yo,7, is taken as 0, 350 and 700.
Under cold wall conditions, T, = T, is taken but to
study the effects of wall temperature variation,
T, = 01 is also considered. A linear y—T relationship
is assumed but u oc \/T'is also taken to illustrate the
effects of different y—T relationship on the flow charac-
teristics.

In Figs. 2-4, uq, v, Ty, py and p, profiles are plotted
in the stagnation region for Re = 7-0, 26:6 and
TyooF, = 0:0, 350-0. It is seen that due to radiation
cooling, the temperature level in the merged shock
layer is reduced and the merged shock layer becomes
thinner. u,, v, and T; profiles are compared with the
results of Liu and Sogame [3]. Figures 2 and 3 show
that these profiles differ considerably from [3] at low
Reynolds number while the difference is very little at
Re = 26:6 as is seen from Fig 4. In the present
analysis, the temperature in the merged shock layer
is slightly higher, the merged shock layer is thicker

-0 —
v, = — Ry
o8 1"/ ; //
/ % /
4 La.4e v
06 / 3500 / — Present resuits
3 / ) — = Liu and Sogame's
: / / results
/ Re =70
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. MeeT
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FiG. 2. Tangential and normal velocity profiles in the
merged shock layer.
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F1G. 3. Temperature, pressure and density profiles in the
merged shock layer.

L aor,
— l— Present results {— OO
o 5" O Fresent resut {550
TV o Liuond Sogome's {o 00 —a0
[
A 4 esults 1A 3500
/
/f‘ / Re=266
8= o abk —|
o= /e o8 M=100 |20
/e I Ty Ty
}/ ! KT —ioo
'
o6l /e !
~ [ a —
?. R l’ - 80 P
3 i | < I
i
O dHpe 4 —60
| /
ifo 4
! —40
U
2 4 "
o /o —20
(]
p
0 ] ] o}

F1G. 4. Velocities, temperature, pressure and density profiles
in the merged shock layer.

and the decrease in the thickness due to radiation cool-
ing is not as large as in [3]. The difference at low
Reynolds number is due to the fact that the thin-layer
assumption is not valid as the thickness of the
merged shock layer becomes comparable to the body
radius. Since no thin-layer assumption is made here,
it is expected that the present results are more reliable
at low Reynolds numbers. At moderately high Rey-
nolds number, the merged shock layer is quite thin
making the thin-layer assumption valid and so the
profiles in the two analysis are very close. Moreover,
in the two thin-layer model, there is a discontinuity
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in the flow variables at the interface of the two layers
due to lack of proper matching. Merging with the
freestream is also not smooth. Present analysis
removes the discontinuity in the flow variables and
the flow smoothly merges with the freestream.

Use of the full Navier-Stokes equations without
any assumption on pressure gradient made it possible
to calculate the pressure distribution in the stagnation
region. Density distribution is also obtained. The
effect of radiation cooling on density is insignificant at
low Reynolds number but at higher Reynolds num-
ber, density first increases near the surface and then
decreases from its zero radiation value as shown in
Fig. 4.

In Fig. 5, the thickness of the merged shock layer is
plotted against Re. The thickness is defined as the
distance of the point at which T; = 01 from the body
surface. It can be seen that at very low Re, the thickness
is 0-8-09 of the body radius suggesting that the thin-
layer approximation is not correct at very low Ke.
Effect of radiation cooling is to decrease slightly the
merged shock layer thickness.

110
— Laz:00
= —= [Lao = 7000
A\ My=100
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F16. 5. Merged shock layer thickness vs Reynolds number.

Considering the most important aspect of heat
transfer to the body surface by various modes, the
local heat transfer rates have been nondimensional-
ized with respect to P i (Hy, — Hy) = Poiis/2 for
a cold wall and hypersonic freestream. Convective
heat transfer coefficient is given by

 kJ(eT/eR,  24p, (oT
& = = — .
" Poiis/)2 PrRen,\on ),

The contribution from the radiative heat flux to

(23
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the surface is obtained by the following integral

R =1 [ prdaT* dF = 20 | CPT® dF.

In terms of heat transfer coefficient, radiative heat
transfer coefficient is given by

1

cf = Tuf(Puiin/2) = nA(oaof) [ pT® dn. (24)
0

The total heat transfer coefficient ¢f *¢ can be ob-
tained by adding (23) and (24).

In Fig. 6, cf;, ¢} and ¢} "< are plotted against Re for
TyaoF, = 700. ¢§ curve is for zero radiation case i.e.
when I'yoy7, = 0. It is seen that the radiation cooling

reduces the convective heat transfer to the surface.

r?)aof-b
r Present results: 7,7 {— 7000
N M=1001-~ 00
Liu ond Sogame's —.--7000
results W™ O{* -00

ole]] L L

FiG. 6. Convective, radiative and total heat transfer vs

Reynolds number.

Further, ¢ decreases with decrease in Re while ¢
increases. Results are compared with that of Liu and
Sogame [3]. Present analysis gives slightly higher
values of ck and the difference decreases as the
Reynolds number increases. The difference in ¢j; curve
seems to be mainly due to the wall temperature effect.
In the present work, when the wall temperature was
changed from T, = T, = 0-:0476 to T,, = 01 to see
the effect of wall temperature, it was found that the
¢, curve moved considerably towards the curve of
Liu and Sogame while ¢§ curve was hardly affected.
This is explained from Fig. 7 which shows that chang-
ing the wall temperature from 0-0476 to 0-1 does not
affect the various profiles except that the surface
density is decreased. Since cfy is an integrated effect of
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which is not altered due to the change in wall tempera-
ture from 00476 to O-1, c’}, curve remains practically
unchanged.

s T

COUCHE DE CHOC HYPERSONIQUE
D’ARRET D'UN CORPS EMOUSSE
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In the end, to see the effect of u—T relationship, u,,
v, and T; curves are plotted in Fig. 8 for u oc T and
for uoc \/T. Only zero radiation case is considered.
It is seen from Fig. 8 that the merged shock layer
thickness is increased when u oc ,/ T'since it effectively
decreases the value of Reynolds number.
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ET RAYONNANTE, PROCHE DE LA REGION

oucie Vlbq ucuse prut.ncs

du point d’arrét d’un corps émoussé sont fondues ensemble. Cette couche de choc est étudiée ici pour un
gaz rayonnant. Le transfert par rayonnement est simplifié. Le modéle d’écoulement est décrit par les équa-
tions complétes de Navier—Stokes. En utilisant le concept de similarité locale, les équations sont réduites &

un systéme d’équations différentielles non linéaires, couplees du huitiéme ordre. Ce s systéme d’équations est
intégré numériquement entre la surface et I’écoulement libre sous différentes conditions de pression.
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Auparavant ce probléme avait été étudié par Lin et Sogame [31dans le cadre d’'un modeéle a deux couches

minces. On a dégagé un certain nombre d’inexactitudes dans cette analyse. On montre que la présente

¢tude donne une information plus précise sur le comportement détaillé de ’écoulement visqueux émissif
aux nombres de Reynolds modérés.

HYPERSONISCHE STOSSSCHICHT MIT STRAHLUNG IN DER STAUZONE
EINES STUMPFEN KORPERS

Zusammenfassung—Bei niedrigen Reynolds-Zahlen verschmelzen Stossschicht und viskose Schicht in
der Nihe des Staupunkts eines stumpfen Kdrpers miteinander. Diese verschmolzene Stossschicht wird in
dieser Arbeit an einem strahlenden Gas untersucht. Die Strahlung wird auf den Fall iiberwiegender
Emission beschrinkt. Mit Hilfe der lokalen Ahnlichkeit werden die Gleichungen reduziert auf einen Satz
von nichtlinearen, gekoppelten, gewohnlichen Differentialgleichungen achter Ordnung. Dieser Gleichungs-
satz wird numerisch integriert von der Fliche bis zur freien Strdmung unter verschiedenen Bedingungen.
Vorher wurde das Problem von Liu und Sogame [3] mit Hilfe eines Modells mit zwei diinnen Schichten
behandelt. Ungenauigkeiten dieser analytischen Entwicklung werden aufgezeigt. Die vorliegende Analyse
gibt eine zuverldssigere und genauere Information iiber das besondere Verhalten der viskosen Strémung
mit Strahlung bei niedrigen Reynolds-Zahlen.

IMIEP3BYROBON U3JIYYAKOIUN CIUTBHIA YIAPHBIA CJION B
OKPECTHOCTU KPUTUYECKON TOYKU 3ATVILJIEHHOI'O TEJA

Apnoramua—IIpu TeueHnn ¢ MameiM uMciaoM PeilfHompaca ymapHap BOIHA U BASKUM CA0U
CIMBAIOTCA B OKPECTHOCTH KPUTUYECKON TOUKM 3aTYIIIEHHOr0 Tesia. B HacToAmelt padote Tako#
CIIMTHI yAAPHHIZ CIolt MCCIefyeTCA B U3IydalolieM rase. JIyducrsiil nepeHoc ynpomaeTcs u
CBOAUTCA K CIOyYal ZOMHMHHMpYomelt smuccuu. OCHOBHAA MOJeNb MOTOKA OMUCHIBAETCH
nodHuMK ypaBHeHusmu HaBbe-Crokca. Vcmompsys MOHATHE JOKANLHOTO MOKo0uA, ypas-
HeHHUS CBOAATCA K HEeNUHENHbIM CIBOEHHBIM OOBIYHBHIM AudepeHNUANbHLHIM YDaBHEHUAM
BOCHEMOTO TOpAfKa. Panee aTa sagada ucciexobanack Jlny u Corefimom [3] Ha Momesnu ABYX
TOHKHX CJ0eB. YHKA3LIBAeTCA HA PAX HETOYHOCTel aTolt aHammTudeckoit paspaborku. Iloxa-
3aHO, UTO JAHHBIM aHanu3 AaeT Gojdee HageKHbIEe U TOYHEIE CBEJCHUA 0 MOBeJEHNU JIyYUCTOro
BABKOIo MOTOKA NMpH MaJsioM 4mcie Pelfnoawnca.



